

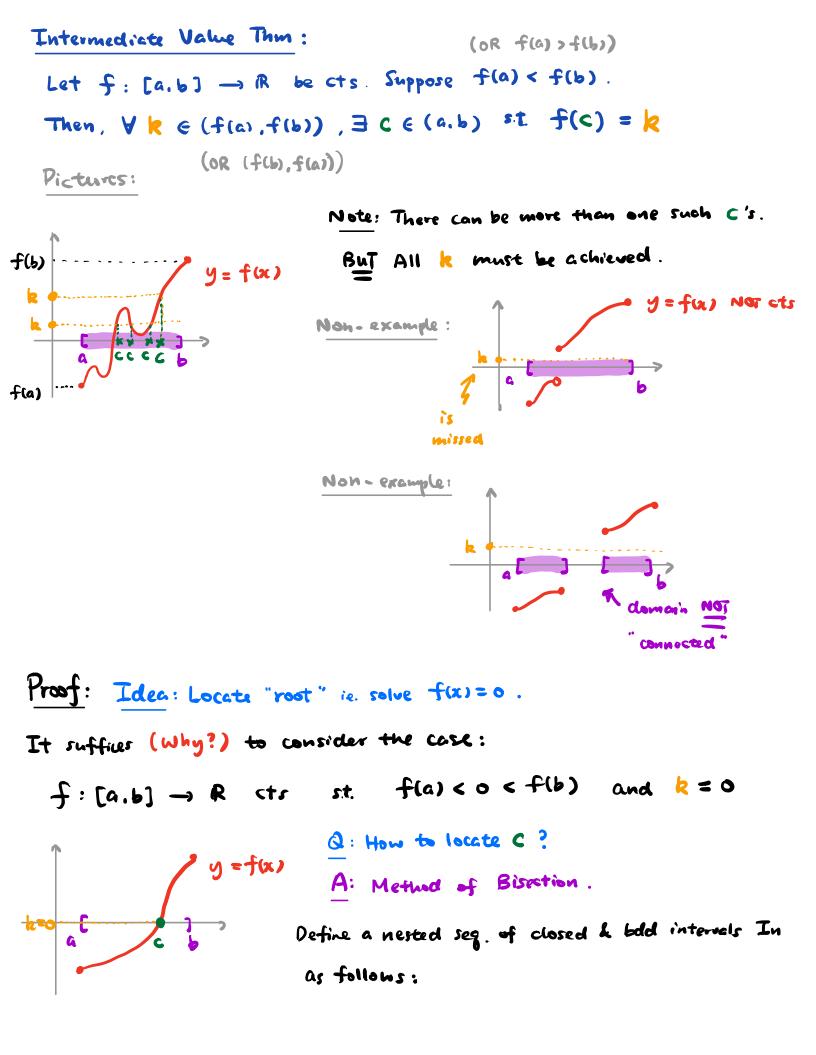
 $\frac{Proof of EVT}{B}: We just prove}{B \times \mathcal{E}[a,b]} s.t. \quad f(x^*) = M := sup [f(x) | x \in [a,b] \}$

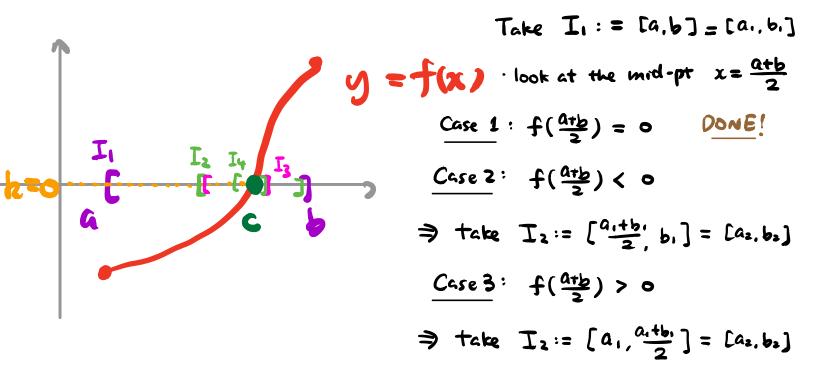
Idea: Take limit of "almost" maxima.

Since $M = \sup [f(x)], \forall \varepsilon > 0. \exists x_{\varepsilon} \in [a,b]$ st. $M - \varepsilon < f(x_{\varepsilon}) \le M$ In particular, take $\varepsilon := \frac{1}{n}$ for $n \in \mathbb{N}$, we obtain a seq. (x_n) in [a,b]

s.t.
$$M - \frac{1}{n} < f(x_n) \le M$$
 $\forall n \in \mathbb{N}$

As
$$(x_n)$$
 is bdd seq, by Bolzano-Weierstrass.
 $\exists \text{ convergent subseq. } (x_{n_k}) \text{ of } (x_n) \text{ , say lim} (x_{n_k}) =: X^* \in [a,b].$
 $Claim: f(x^*) = M$
 $\frac{2f:}{5ince} M - \frac{1}{n_k} < f(x_{n_k}) \leq M \quad \forall h \in \mathbb{N}$
 $take k \rightarrow \infty$. we get $n_k \rightarrow \infty$ and
 $f \text{ cts at } x^*$
 $M \leq lim f(x_{n_k}) \stackrel{i}{=} f(x^*) \leq M$.





Repeat again to look at the mid-pt of Iz etc. Either you get a root at some step. DONE. Otherwise, you obtain a seq. of closed & bold intervals In Intervals Interv

By Nested Interval Proper, we have $\bigcap_{n=1}^{\infty} I_n = \{c\} \qquad : \text{Length}(I_n) \rightarrow 0$ Claim: f(c) = 0 $\frac{Pf: \text{Since lim}(a_n) = c = \text{lim}(b_n), \text{ by containanty at } c,$ $f(a_n) < 0 < f(b_n) \quad \forall n \implies f(c) \le 0 \le f(c)$ $\lim_{n \to \infty} f(b_n) \quad \forall n \implies f(c) \le 0 \le f(c)$

Remark: f cts function on closed & bdd interval.

closed & bdd = "compact" & "connected" interval EVT, IVT (~) cts functions preserve these 2 properties